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a b s t r a c t

In this work, we propose a Hidden Markov Model for Internet traffic sources at packet level,
jointly analyzing Inter Packet Time and Packet Size. We give an analytical basis and the
mathematical details regarding the model, and we test the flexibility of the proposed mod-
eling approach with real traffic traces related to common Internet services with strong dif-
ferences in terms of both applications/users and protocol behavior: SMTP, HTTP, a network
game, and an instant messaging platform. The presented experimental analysis shows that,
even maintaining a simple structure, the model is able to achieve good results in terms of
estimation of statistical parameters and synthetic series generation, taking into account
marginal distributions, mutual, and temporal dependencies. Moreover we show how, by
exploiting such temporal dependencies, the model is able to perform short-term prediction
by observing traffic from real sources.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Understanding and solving performance-related issues
of current and future networks requires the availability
of realistic, but still simple and manageable, traffic models.
Therefore the modeling of Internet traffic represents a crit-
ical task in the study and in the design of Internet architec-
tures. Many efforts have focused on modeling source traffic
related to specific application-level protocols, also with the
purpose of conducting realistic network traffic simulation
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and emulation experiments (i.e. generating synthetic traf-
fic in real networks).

Here we present a source-based modeling approach
relying on a packet-level view of Internet traffic. The anal-
ysis of network traffic, indeed, can be made at different
abstraction levels, e.g. session, conversation, connection/
flow, packet, byte. With the term packet-level we mean
the characterization of traffic in terms of Inter Packet Time
(IPT) and Packet Size (PS). Such approach results particu-
larly attractive because of its conciseness, flexibility, and
because it allows to look at traffic from the lowest point
of view. With the term source-based approach, we mean
a traffic characterization and modeling of traffic generated
by Internet applications running on single hosts.

As for the analytical approach, we adopted a specifically
suited Hidden Markov Model (HMM). The idea is to keep
the model analytically simple and tractable, but capable
to capture important joint dynamics (in terms of both mar-
ginal distributions and time dependencies) of IPT and PS.
We evaluate the model capabilities (learning, generation,
and prediction) in order to construct realistic packet-level
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models from the automated analysis of empirical traffic
traces, by considering the marginal distributions and the
auto- and cross-covariances of IPT and PS. In addiction,
we compare synthetically generated sequences of IPT–PS
pairs against those from real traces. Also, we show the
capability of the proposed model to predict the short-term
future behavior of the analyzed traffic on the basis of a very
small amount of monitored traffic.

An important objective of this work is the design of a
model flexible enough to work with different kinds of
Internet traffic sources. For this reason, we apply our ap-
proach to traffic traces of various application-layer proto-
cols and related to very different Internet services. More
precisely we separately consider traffic generated by (i)
SMTP, (ii) HTTP, (iii) a network game, and (iv) an instant
messaging application. The conducted experimental inves-
tigation shows that, with a very limited complexity, the
proposed model achieves acceptable results. Moreover,
the prediction capabilities of the model – tested here in
an off-line fashion – let foresee the useful application of
such modeling approach for resource reservation and
admission control purposes.

Finally, according to the source-based approach, we do
not focus on aggregate link traffic, whereas we separately
analyze several sessions of traffic exiting from single hosts
related to specific application-level protocols. The purpose
is to model the average single session for each considered
application. The effect of superposition of multiple syn-
thetic traffic sources, e.g. the presence of self-similarity
and long range dependence in the synthetic aggregated
traffic, falls beyond the scope of this paper.

The rest of the paper is organized as follows. In Section
2, related works and motivations at the basis of this work
are given. Section 3 provides an introduction to HMM
and a description on their application to build the pro-
posed analytical model, furnishing details about model sta-
tistics and the learning stage. Section 4 describes the
measurement approach, giving insights and motivations
on the specific traffic taken in consideration. In Section 5,
we show results of the model applied to SMTP, HTTP, Age
of Mythology (AoM), and MSN Messenger. Section 6 ends
the paper discussing the presented results and giving con-
clusion remarks.
2. Motivation and related work

Source traffic models are necessary to reproduce realis-
tic user/application behavior in simulative environments
or in network testbeds by injecting synthetic network traf-
fic (e.g. traffic emulation). This allows to study network
architectures performance problems by reconstructing
the flows of packets generated by single sources. In the
past, several source models related to HTTP traffic have
been proposed [3,4], being the dominant Internet applica-
tion, whereas only simple statistical characterizations of
source traffic related to other applications like SMTP, net-
work games, etc., have been presented [5,6]. Past years
though, have seen a growing heterogeneity of Internet
applications, making necessary the availability of models
for different kinds of applications. Here, we explore the
feasibility of a single modeling approach, flexible enough
to work with different categories of sources, to be easily
integrated into a traffic generation (or simulation) frame-
work [7]. Moreover, even if we stress that this was the
main focus of the present work, as regards some of the con-
sidered traffic categories, as network games, we would like
to notice that this work represents one of the first attempts
to build a thorough statistical model able to take into ac-
count multiple properties of the traffic. Indeed, while there
exists a rich literature in terms of traffic characterizations
and sometimes modeling of network games [6,8–11], this
usually focuses on fitting the marginal distributions of
IPT and PS, sometimes by arbitrarily splitting the fitting
into different analytical distributions for different portions
of the sample set; time dependence (a relevant property to
consider when studying traffic modeling and simulation)
and mutual dependence are usually not taken into account.

The proposed model relies on HMMs to reproduce traf-
fic sources at packet-level. The reason for we focused on a
packet-level view of traffic is that it provides the following
benefits when compared with higher-level approaches: (i)
we look at traffic at the deepest level of detail but at the
same time basing the observations on just two variables;
(ii) switching devices often operate on a packet-by-packet
basis, therefore it is important to dispose of realistic pack-
et-level models to evaluate their performance; (iii) most
network performance problems (e.g. Loss, Delay, Jitter)
happen at packet level; (iv) working at packet-level makes
our approach independent of protocols evolution and
applicable to different applications/protocols; (v) such
kind of model is usable in traffic generators and simula-
tors; (vi) traffic at packet level remains observable after
encryption made by, for example, end-to-end crypto-
graphic protocols such as SSL or IPSec; (vii) packet-level
traffic models make robust approaches to traffic profiling
for anomaly detection.

As far as concerns the analytical modeling approach, we
had to face the trade-off among accuracy (the capability to
capture as much statistical properties of traffic dynamics
as possible), flexibility, and simplicity. The use of HMMs al-
lowed us to build an easily tractable model, capable to
jointly take into account IPT and PS first order statistics
as well as temporal dynamics and correlation. In spite
the large number of references related to network traffic
modeling, very few works aim at joint modeling of IPT
and PS [12–14]. Whereas, it has been demonstrated that
neglecting aspects related to PS (e.g. assuming a constant
value) significantly affects performance analysis [12]. Cor-
relation structure is also a fundamental aspect that must
be considered [15] when realistic replication of traffic is
needed.

Recently the interest in HMM-based models has
grown, and HMM models have been proposed as a tool
for several network traffic related research problems. In
[16,17] HMM models have been used to model the states
of packet channels via corresponding loss probabilities
and end-to-end delay distributions. Similar works have
been proposed to model wired [18] and wireless [19]
packet channels. To the best of our knowledge, few mod-
eling works using HMMs to model traffic sources at pack-
et level are present in literature. Specifically, we found



1 Notation – Upper (resp. lower) bold case letters denote matrices (resp.
column vectors), Ai;j (resp. ai) denotes the ði; jÞth (resp. ith) element of
matrix A (resp. column vector a), 1 denotes a column vector whose
elements are 1, di;j denotes the delta of Kronecker, ½��T and Ef�g, respectively,
denote transpose and expectation operators, the symbol � means ‘‘distrib-
uted as”.

2 If the observable variable is continuous, the observable matrix is
replaced with a set of N conditional pdfs, say fB1ðyÞ;B2ðyÞ; . . . ;BNðyÞg.
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approaches to Internet traffic modeling able to capture
temporal structures based on MMPP (Markov Modulated
Poisson Process) [20] and BMAP (Batch Markovian Arrival
Process) [12,13]. In [20], authors propose a layered model
to replicate traffic at edge routers that takes into account
hierarchical characteristics of Internet traffic as well as
long-range dependence properties, while in [13] efficient
implementation of analytical tractable models for aggre-
gate IP traffic is presented focusing on burstiness and
self-similarity properties. The BMAP model proposed in
[12], which considers both packet IPT and PS, is designed
to capture the long-range dependence present in traffic
traces of aggregate link traffic and it is evaluated in terms
of queue analysis. In our work, instead, we concentrate on
the traffic generated by single sources which is then
mixed in network links, therefore here we do not consider
queue analysis. In [21], a Markov-based model has been
proposed and applied to variable bitrate MPEG traffic;
GOP layer traffic characteristics for MPEG video traffic
and sources are constructed from MPEG1 encoded video
sequences. The same model has been applied to other
traffic types (e.g, VoIP traffic). In [22], HMMs have been
used to disjointly model IPT and PS of both aggregated
and WWW traffic, comparing results against those from
a stochastic generator based on a chaotic attractor. Final-
ly, in [23], again considering IPT and PS disjointly, HMMs
have been used to build traffic classifiers based on packet-
level statistics related to some Internet applications. It is
worth noticing that the HMM-based modeling approach
presented here is part of a more general framework that
also includes packet-channels modeling [18,19]. The
long-term objective is a powerful homogeneous analytical
framework for effective modeling of packet-level environ-
ments in heterogeneous scenarios (both in terms of traffic
sources and end-to-end network paths).

To highlight and summarize the significance of the ap-
proach proposed in this work, we underline that, to the
best of our knowledge, it extends the results present in lit-
erature in that

� it allows IPT/PS joint description;
� it allows synthetic series generation of both IPT and PS;
� it allows source state estimation with traffic prediction;
� it is derived by real traffic traces;
� it has been tested on different traffic types (quite differ-

ent from each other in terms of both used protocols and
users/applications behavior), deriving analogies and dif-
ferences on the equivalent traffic models;

� results obtained with the analyzed traffic categories
show the flexibility of the proposed model making it
generalizable;

� as regards games traffic, this represents one of the first
works to present a more complete model taking into
account the aforementioned statistical properties.

Finally, we would like to underline that at [24], we
make publicly available the open-source tool (called Plab)
used for traffic analysis and measurement at packet-level,
the algorithms developed for the analytical model, and, fi-
nally, the large set of heterogeneous data/traffic traces
used in this work.
3. The model

3.1. Hidden Markov Models

We propose a statistical model1 for packet-level net-
work traffic. More specifically, we model the single source
of traffic as an HMM. Generally speaking, an HMM may be
viewed as a probabilistic function of a (hidden) Markov
chain [25], thus it is composed of 2 variables:

� the hidden-state variable, whose temporal evolution fol-
lows a Markov-chain behavior;

� the observable variable, that stochastically depends on
the hidden state.

Its topology is shown in Fig. 1, where xn 2 fs1; . . . ; sNg
and yn 2 fo1; . . . ; oMg represent the state and the observa-
ble at discrete time n, respectively, with N and M being
the number of states and the number of observable,
respectively. An HMM is characterized by

� u – the initial state distribution, where ui ¼ Prðx1 ¼ siÞ;
� A – the N � N state transition matrix, where Ai;j ¼

Prðxn ¼ sjjxn�1 ¼ siÞ;
� B – the N �M observable generation matrix,2 where

Bi;j ¼ Prðyn ¼ ojjxn ¼ siÞ.

We denote k ¼ fu;A;Bg the complete set of parameters.
The three fundamental problems of an HMM are

� evaluation – given a model k and a sequence of observa-
tions y ¼ ðy1; . . . ; yLÞ, compute efficiently the probability
of the sequence given the model, PrðyjkÞ. It is solved via
the forward–backward algorithm.

� reconstruction – given a model k and a sequence of
observations y ¼ ðy1; . . . ; yLÞ, find the most likely corre-
sponding sequence of states x ¼ ðx1; . . . ; xLÞ. It is solved
via the Viterbi algorithm, a dynamic programming tech-
nique performing computation of the best score and
tracking variables.

� learning – given a sequence of observations y ¼
ðy1; . . . ; yLÞ, find the set of parameters k such that the
likelihood of the model Lðy; kÞ ¼ PrðyjkÞ is maximum.
It is solved via the Baum–Welch algorithm, a special
case of the Expectation–Maximization algorithm [26],
that iteratively updates the parameters in order to find
a local maximum point of the parameter set.

It is worth noticing that the recursive computation of
the forward and backward variables presents a complexity
oðLN2Þ with respect to the complexity oðLNLÞ of direct
calculation, with L being the length of the sequence of



Fig. 1. Hidden Markov Model topology.
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observations. For a more comprehensive discussion on
HMMs refer to [25,27,28].

3.2. A packet-level source model

Referring to a single source of traffic, we consider an
HMM in which the state variable is discrete, xn 2
fs1; . . . ; sNg, and the observable variable is a continuous
bi-dimensional vector, yn ¼ ½dn; bn�T. The first and second
components of yn represent the IPT and the PS for the
nth packet, respectively in dBl (which we define as
10log10ðIPT=1 lsÞ) and in bytes.3 The state variable has
been introduced to account for memory and correlation
phenomena between IPT and PS. We assumed that IPT and
PS are statistically independent given the state. Also, in
order to reduce the number of parameters, we assume
u ¼ q, where q is the steady-state distribution,4 given by
ATq ¼ q.

K ¼ fA;gðtÞ;wðtÞ;gðpÞ;wðpÞg is the set of parameters
characterizing the model, denoting the state transition
matrix, the conditional IPT and PS distribution vectors,
respectively, i.e.

� Ai;j ¼ Prðxnþ1 ¼ sjjxn ¼ siÞ;
� dnjxn ¼ si � CðgðtÞi ;w

ðtÞ
i Þ;

� bnjxn ¼ si � CðgðpÞi ;wðpÞi Þ;

then the conditional pdfs for IPT and PS are:

f ðtÞi ðdÞ ¼
ðd=wðtÞi Þ

gðtÞ
i
�1 e�ðd=wðtÞ

i
Þ

wðtÞi CðgðtÞi Þ
ðd > 0Þ;

f ðpÞi ðbÞ ¼
ðb=wðpÞi Þ

gðpÞ
i
�1 e�ðb=wðpÞ

i
Þ

wðpÞi CðgðpÞi Þ
ðb > 0Þ:

The choice of Gamma distributions for IPT and PS is be-
cause a mixture of normal distributions can easily approx-
imate a general distribution, Gamma is practically very
similar to a normal distribution and has the desirable char-
acteristic to be null for negative values (being negative IPT
3 We measure IPT with a resolution of 1 ls (as explained in Section 4)
and apply a logarithmic transformation because they range over several
orders of magnitude.

4 If xn is an irreducible and aperiodic process, the steady-state distribu-
tion equals the limit distribution, qi ¼ limn!1fPrðxn ¼ siÞg, see [29].
and PS meaningless). Summarizing we have a model where
xn is a discrete random variable whose dynamic behavior is
governed by the transition matrix A, with a Markovian
assumption for the evolution, and yn is a bi-dimensional
continuous random variable describing IPT and PS as mix-
tures of conditionally independent (given the state) Gam-
ma distributions, i.e.

fiðynÞ ¼ f ðtÞi ðdnÞf ðpÞi ðbnÞ: ð1Þ
3.2.1. Model statistics
The IPT and PS conditional means and standard devia-

tions are

lðtÞi ¼ gðtÞi wðtÞi ; rðtÞi ¼
ffiffiffiffiffiffiffi
gðtÞi

q
wðtÞi ; lðpÞi ¼ gðpÞi wðpÞi ;

rðpÞi ¼
ffiffiffiffiffiffiffiffi
gðpÞi

q
wðpÞi ; ð2Þ

respectively, due to the conditional Gamma distribution
assumption, then the IPT and PS global means and stan-
dard deviations of the model are

lðtÞ ¼
XN

i¼1

qil
ðtÞ
i ; rðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

qil
ðtÞ
i ð1þ gðtÞi Þw

ðtÞ
i � ðlðtÞÞ

2

vuut ;

lðpÞ ¼
XN

i¼1

qil
ðpÞ
i ; rðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

qil
ðpÞ
i ð1þ gðpÞi Þw

ðpÞ
i � ðlðpÞÞ

2

vuut :

ð3Þ

Also, global IPT and PS pdfs are

fIPTðdÞ ¼
XN

i¼1

qif
ðtÞ
i ðdÞ; f PSðbÞ ¼

XN

i¼1

qif
ðpÞ
i ðbÞ:

The conditional (given that state) duration in the state si is

/i ¼
1

1� Ai;i
: ð4Þ

IPT and PS auto- and cross-correlations of the model are

RðtÞðmÞ ¼ Efdndnþmg ¼
qTEðtÞII 1; m ¼ 0;

qTEðtÞAjmj�1EðtÞ1; m 6¼ 0;

(

RðpÞðmÞ ¼ Efbnbnþmg ¼
qTEðpÞII 1; m ¼ 0;

qTEðpÞAjmj�1EðpÞ1; m 6¼ 0:

(

RðtpÞðmÞ ¼ Efdnbnþmg ¼
qTEðtpÞII 1; m ¼ 0;

qTEðtÞAjmj�1EðpÞ1; m 6¼ 0:

(

where

EðtÞIIi;j ¼ Ai;ið1þ gðtÞi Þg
ðtÞ
i ðw

ðtÞ
i Þ

2di;j; EðtÞi;j ¼ Ai;ig
ðtÞ
i wðtÞi di;j;

EðpÞIIi;j ¼ Ai;ið1þ gðpÞi Þg
ðpÞ
i ðw

ðpÞ
i Þ

2di;j; EðpÞi;j ¼ Ai;ig
ðpÞ
i wðpÞi di;j;

EðtpÞIIi;j ¼ Ai;ig
ðtÞ
i wðtÞi gðpÞi wðpÞi di;j:

It is worth noticing that E and EII are first-order and sec-
ond-order statistics matrices. To show traffic dynamics
without the biasing effects of IPT and PS global means, in
Section 5 covariances are taken into account instead of
correlations.
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3.2.2. Learning the model parameters
The Expectation–Maximization algorithm [26] is an

optimization procedure that allows learning of a new set
of parameters for a stochastic model according to improve-
ments of the likelihood of a given sequence of observable
variables. For structures like HMM’s this optimization
technique reduces to the Baum–Welch algorithm
[25,27,28], studied for discrete and continuous observable
variables with a broad class of allowed conditional pdfs.
The Baum–Welch algorithm is an iterative procedure look-
ing for a local maximum of the likelihood function which
typically depends on the starting point K. When necessary,
multiple trainings with different initial conditions provide
the global solution.

More specifically, consider a set of observable se-
quences Y ¼ fYð1Þ; . . . ;YðKÞg referred to as the training set,
where each sequence YðkÞ ¼ ½yðkÞ1 ; . . . ; yðkÞLk

� represents IPT
and PS from a single session.5 We want to find the set of
parameters such that the likelihood LðY; KÞ ¼ PrðYjKÞ of
the training set is maximum. The Baum–Welch for the pro-
posed source-traffic model is then based on the following
equations:

Âi;j ¼
PK

k¼1
1

LðkÞ

PLk�1
n¼1 aðkÞn ðiÞAi;jfjðyðkÞnþ1Þb

ðkÞ
nþ1ðjÞPK

k¼1
1

LðkÞ

PLk�1
n¼1 aðkÞn ðiÞbðkÞn ðiÞ

;

ĝðtÞi ŵðtÞi ¼
PK

k¼1
1

LðkÞ

PLk
n¼1a

ðkÞ
n ðiÞbðkÞn ðiÞd

ðkÞ
nPK

k¼1
1

LðkÞ

PLk�1
n¼1 aðkÞn ðiÞbðkÞn ðiÞ

;

ĝðpÞi ŵðpÞi ¼
PK

k¼1
1

LðkÞ

PLk
n¼1a

ðkÞ
n ðiÞbðkÞn ðiÞb

ðkÞ
nPK

k¼1
1

LðkÞ

PLk�1
n¼1 aðkÞn ðiÞbðkÞn ðiÞ

;

ĝðtÞi ðŵ
ðtÞ
i Þ

2 ¼
PK

k¼1
1

LðkÞ

PLk
n¼1a

ðkÞ
n ðiÞbðkÞn ðiÞðd

ðkÞ
n � lðtÞi Þ

2PK
k¼1

1
LðkÞ

PLk�1
n¼1 aðkÞn ðiÞbðkÞn ðiÞ

;

ĝðpÞi ðŵ
ðpÞ
i Þ

2 ¼
PK

k¼1
1

LðkÞ

PLk
n¼1a

ðkÞ
n ðiÞbðkÞn ðiÞðb

ðkÞ
n � lðpÞi Þ

2PK
k¼1

1
LðkÞ

PLk�1
n¼1 aðkÞn ðiÞbðkÞn ðiÞ

;

where referring to the kth sequence, the likelihood is

LðkÞ ¼ PrðYðkÞjKÞ ¼
XN

i¼1

aðkÞn ðiÞb
ðkÞ
n ðiÞ;

and the Forward and Backward variables are computed
according to the following recursions:

aðkÞn ðjÞ ¼
PN�1

i¼0
aðkÞn�1ðiÞAi;jfjðyðkÞn Þ; n ¼ 1; . . . ; Lk;

d1;j; n ¼ 0;

8><
>:

bðkÞn ðiÞ ¼
PN�1

j¼0
Ai;jfjðyðkÞnþ1Þb

ðkÞ
nþ1ðjÞ; n ¼ 0; . . . ; Lk � 1;

1; n ¼ Lk:

8><
>:

In our experiments the initialization for the parameter set
K, has been such to have the conditional pdfs, for both IPT
and PS, uniformly distributed on the whole observed range.
More specifically, the state-transition matrix is given by

Ai;j ¼ 1=N; ð5Þ
5 The meaning of ‘‘session” will be better defined in Section 4.
while denoting

dmin ¼ min
k;n

dðkÞn ; dmax ¼max
k;n

dðkÞn ;

bmin ¼min
k;n

bðkÞn ; bmax ¼max
k;n

bðkÞn ;

then fgðtÞ;wðtÞ;gðpÞ;wðpÞg are chosen as

lðtÞiþ1 � lðtÞi ¼
dmax � dmin

N þ 1
; rðtÞi ¼

dmax � dmin

5ðN þ 1Þ ;

lðpÞiþ1 � lðpÞi ¼
bmax � bmin

N þ 1
; rðpÞi ¼

bmax � bmin

5ðN þ 1Þ :

ð6Þ
4. Traffic traces and measurement approach

4.1. Considered traffic

To verify its flexibility and general applicability, the
proposed modeling approach has been tested with differ-
ent categories of Internet traffic sources. The choice of such
applications takes into account the level of novelty and
popularity. Also, we considered applications differing from
several points of views which all reflect into traffic pecu-
liarities: man–computer interaction, transferred objects,
underlying network protocols, etc.

The list of considered Internet applications, along with
details of the corresponding traffic traces we used,6 is re-
ported in Table 1.

Firstly, we considered more traditional services as the
Web and the Email. Although HTTP and SMTP are two
applications largely involving all the Internet population
(the most used by common users), they substantially differ
for the kinds of treated objects as well as the level of user
interaction. The characteristics of traffic generated by HTTP
clients can be heavily affected by the human factor, above
all as regards timings [2,3], whereas SMTP clients traffic is
affected by users mostly in terms of the number and size of
packets to be transferred.

Secondly, we considered applications which have be-
come popular in the recent years and currently represent
an increasing portion of the overall Internet traffic: instant
messaging and multi-player network games. They both
present novel and interesting characteristics with respect
to other applications. Due to these differences, as for both
games and instant messaging, the interest in the character-
ization and modeling of their traffic is increased in the last
years [6,11,31,32].

Network games have strict latency requirements and
traffic properties which substantially differ from more tra-
ditional Internet applications [6]. Moreover, while their
traffic represents a relevant percentage yet – in [33] it
was reported that about 4% of all packets in a backbone
could be associated with only six popular network games
– it is constantly increasing. Thus, analysis of such traffic
is crucial to properly design and provision networks for fu-
ture needs. We studied traffic generated by Age of Mythol-
ogy (AoM), a Microsoft Real Time Strategy Multiplayer
6 Apart the AoM traffic traces available at [30], they are freely available at
[24].



Table 1
Traffic traces details

Traffic Link Protocol Port Date Size Pkts Sessions

SMTP WAN TCP 25 9/2005 3 GB 43 M 56 K
HTTP WAN TCP 80 7/2004 60 GB 830 M 1 M
AoM LAN UDP 2300 8/2003 12 MB 180 K 6
MSN WAN TCP 1863 4/2006 1 GB 9 M 1 M

2650 A. Dainotti et al. / Computer Networks 52 (2008) 2645–2662
Game [34]. As regards Instant Messengers, they are used by
50% of the Internet users all around the world [35], being
MSN Messenger the most popular application, followed
by AOL and Yahoo Messenger. In this work we model the
traffic generated by MSN Messenger (MSN in the follow-
ing) clients [36]. The level of user interaction in these kind
of applications is obviously much higher. Moreover, be-
cause they represent a new vehicle of viruses, worms,
and of other kinds of malicious use, the study of instant
messaging applications, besides email, has also interesting
security implications. For example, the traffic behavior
characterization and modeling of such applications could
be exploited for security purposes (classification, detec-
tion, prevention).

In Table 1 details about the traffic traces that we
analyzed are given. As regards SMTP, HTTP, and MSN, we
captured traffic by passively monitoring the WAN access
link at University of Napoli ‘‘Federico II” network during
the period January 2004–April 2006. The observed link rep-
resents the only connection of the University network to
the Internet, and it has a maximum throughput equal to
200 Mbps.

With the term ‘‘session”, in the case of SMTP (resp.
HTTP), we mean all the traffic exchanged between two
hosts related to port TCP 25 (resp. TCP 80), with a timeout
of 15 min. As regards SMTP, we present results from the
sessions with less than 100 packets, which we defined as
short-lived, and which account for � 97% of the SMTP ses-
sions. This is because we found that there are other ses-
sions which exhibit extremely different statistical
properties. This was confirmed by a K-means clustering
we performed using a few features per session, e.g. number
of packets, bytes, IPT and PS mean and variance. Note that
considering only this class does not affect our approach, as
we do not want to provide a comprehensive model for
SMTP traffic. At this stage we want to show the applicabil-
ity of the proposed approach also to this kind of traffic. As
regards MSN, the MSN protocol, uses a client–server com-
munication model in which user clients interact with
Microsoft servers that belong to the MSN Messenger net-
work and which accept connections on TCP port 1863
Capture Trace 
inspection

Trace 
sanitization 
anonymizatio

Fig. 2. Life cycle of
[37]. There are mainly two kinds of servers, which offer
services of presence and instant messaging, respectively,
[38]. Analysis of both communication protocol and real
traffic traces allowed us to identify the subnets associated
to each service. We collected traffic related to both services
and both directions (inbound and outbound). In this work
we report results related only to the outbound direction
(i.e. from the clients to the servers) of instant messaging
traffic. Each session is made of all the traffic exchanged be-
tween a single client–server pair (related to server port TCP
1863), with an inactivity timeout of 15 min. The AoM
traces, instead, have been provided, in Tcpdump format,
by the Worcester Polytechnic Institute (WPI), MA (USA)
[30]. They consist of packet sequences of complete gaming
sessions, between two players, captured in a LAN environ-
ment. We consider an AoM session given by all the traffic
exchanged from the beginning to the end of a match. Only
six gaming sessions were studied, because packet-level
traffic of RTS games has been demonstrated being very
predictable and strongly dependent from the specific game
application whereas it is poorly dependent from user
behavior [39]. Indeed, past works studying the statistical
characterization of the traffic generated by this game have
used only such traces. Such works show that this traffic is
substantially different from traffic of more classical net-
work applications. Moreover, in [40] we showed results
and commented regarding the invariance of gaming traffic
when observed under different situations, which makes
reasonable the use of a small number of traces. As regards
SMTP, HTTP, MSN traces, instead, we observed a much lar-
ger set of sessions. This is because of the more complex
nature of such traffic [2] and also because we could gather
our own traces.

4.2. Tools and issues with the data

Obtaining and making available traffic data useful for
characterization and modeling is a complex task, which
not only consists into traffic collection and selection of
the appropriate traffic flows, but it also involves activities
such as data sanitization and anonymization (see Fig. 2).

We used Plab [2,24] to capture the traffic traces we col-
lected and analyzed. Plab is an open-source software, par-
tially based on the Libpcap library [41], that we developed
for the analysis of live traffic and of file traces in tcpdump
format, and focused on packet-level measurement and
analysis. This platform, employed also in previous works
on traffic analysis and modeling, is capable to efficiently
analyze very large traffic traces and to separate traffic into
different sessions. Depending on user-specified parame-
& 
n

Measurements 
and preliminary 

analysis

Data 
analysis

data analysis.
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ters, a session can be identified by: (i) all packets sent and
received by a host (host mode); (ii) all packets identified by
source and destination IP and ports with a default timeout
of 60 s (flow mode); (iii) all packets exchanged by 2 hosts
related to a specific service (e.g. TCP port 80), with a user
definable timeout (conversation mode). Given one of the
above modes, sessions are assigned an ID, and for each ses-
sion IPTs between packets flowing in the same direction
are calculated, along with PS. We call such data packet-le-
vel data series.

With Plab it is possible to specify command line filters
in tcpdump/Berkeley Packet Filter syntax to select the type
of traffic to be captured or analyzed, e.g. layer 3 protocol,
port, etc. Also, more intelligence was introduced into the
software, as the ability to decode optional TCP headers like
the MSS, or to filter packets or entire sessions based on
several others criteria. For example, we introduced some
payload inspection capabilities which served for data
sanitization.

As regards sanitization, indeed, here we report on how
we removed, from the considered data, samples related
to traffic which was not HTTP, but tried to masquerade
as it by running on TCP port 80. We instructed Plab to ana-
lyze the first 3 bytes of payload data exchanged between
each host pair of a conversation related to TCP port 80. Un-
der normal conditions, such bytes should correspond to the
method invoked by the client in a HTTP request. As re-
ported in Table 2, we observed that almost 94% of the ses-
sions started with a GET request, 4% with a POST request,
etc. Only a small fraction of the sessions presented packets
starting with a byte not corresponding to an alphabetic
character. Inside this category, 99% of the conversations
started with the byte 0xe3, the first byte exchanged by
peers opening a communication session based on the
eDonkey2000 protocol [42], used by eMule and eDonkey
file-sharing applications. Also, 0.44% of the sessions were
initiated by the host communicating from port TCP 80
(labeled as ‘‘downstream” in Table 2). Because our interest
was in modeling traffic generated only by applications
running over HTTP, we instructed Plab to recognize such
sessions and to filter them out. By filtering our traces, we
observed that 5.12% of the processed packets were dis-
carded. Therefore, this non-HTTP traffic represents a not
negligible portion of the captured traffic. As regards the
number of filtered sessions, they account for about 0.7%
of the total. This suggests that the filtered sessions tend
to generate more packets than authentic HTTP ones. By
comparing the results obtained with and without filtering
such sessions, we observed that discarded traffic had a
consistent impact in terms of payload size and inter-packet
time. Comparisons of the obtained distributions for up-
stream traffic at the UNINA site are shown in Fig. 3.
Table 2
Payload inspection on the first packet opening a conversation related to TCP
port 80

Conversation
start

GET POS HEA Downstream 0xe3 PRO

Percentage 93.94 4.23 0.7 0.44 0.27 0.2
Observing the properties of such distributions it is clear
that the filtered sessions increase the portion of back-to-
back packets with full payload, probably due to the pres-
ence of file-transfers. As reported in [2], after filtering out
such traffic from the traces captured at the UNINA site,
we found packet-level profiles strongly similar to those ob-
tained by observing traffic at another site in which no Peer-
to-Peer applications were running. This is not only a confir-
mation of the correct sanitization we performed, but also
revealed important invariants (with respect to space and
time) of the characteristics of the studied traffic.

The above example shows how acquiring realistic and
reliable data to be used as a reference for traffic modeling
is a delicate and sometimes not straightforward task,
which requires attention and appropriate tools.

Finally, as regards data anonymization, to preserve
users privacy we kept only the IP and TCP headers of each
packet, and we scrambled IP addresses using the wide-
tcpdpriv tool from the MAWI-WIDE project [43].
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Table 3
Model discrepancy: IPT-k2 and PS-k2

IPT-k2 PS-k2

SMTP
Starting 2:1� 108 3:3� 1046

Trained 1.4 4.6

HTTP
Starting 1:7� 106 1:1� 1044

Trained 0.31 0.30

AoM
Starting 0:99� 102 2:2� 1016

Trained 0.24 1.6

MSN
Starting 1:7� 102 1:3� 1047

Trained 0.68 1.8

Table 4
Covariance EF: IPT-K, IPT-m, PS-K, PS-m, IPT/PS-K and IPT/PS-m

IPT-K IPT-m PS-K PS-m IPT/PS-K IPT/PS-m

SMTP
Data 1.0 1.2 1.0 0.91 �0.31 0.46
Starting 1.0 50 1.0 50 1.0 50
Trained 1.0 0.43 1.0 0.25 �0.54 0.18

HTTP
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4.3. Measurement methodology and analyzed data

For each session between two hosts, depending on their
direction, two separate flows of data can be identified,
which we called upstream and downstream. In the case of
SMTP, HTTP, and MSN, we identify as upstream the traffic
flowing from a client to a server, that is, packets with des-
tination port set to respectively TCP 80, TCP 25, and TCP
1863. Whereas downstream traffic is related to the oppo-
site direction. In the case of SMTP, as regards downstream
traffic, it is worth mentioning that the vast majority of
downstream flows – for each session – are made of only
few packets (about 5) of small size. Thus they represent a
very small portion of SMTP traffic. This can explained by
SMTP protocol specifications: the peer acting as a server
usually answers to requests and data transfers from the cli-
ent with small messages that must have a numeric ID pre-
pended. As for HTTP instead, strong volumes of traffic are
generated in both directions, this is due to the intrinsic
nature of the Web traffic.

In this paper, we concentrate on the traffic sources rep-
resented by SMTP, HTTP, and MSN clients, we therefore
model only upstream traffic. We adopt the same approach
for AoM, modeling the traffic flowing in the outbound
direction when seen from the point of view of a specific
peer (i.e. leaving the workstation of a gaming user). Any-
way, being the observed AoM traces related to matches
with two players, the traffic flowing in the other direction
is almost symmetrical.

An important aspect of our methodology is that in the
evaluation of IPT and PS distributions we did not take into
account packets with empty payload at transport level.
Since we wanted to characterize the traffic generated by
the applications, independently as much as possible of
the transport level protocol itself, we decided to drop
all TCP-specific traffic, like connection establishment
packets (SYN-ACK-SYNACK) and pure acknowledgment
packets [44]. For the same reason, in the estimation of
the packet size, we measured the byte length of the TCP
payload or, in the case of AoM we considered the UDP pay-
load. These choices make our results usable for simulation
purposes as an input for TCP state machines and UDP/IP
stacks, like in D-ITG [24] and TCPlib [45].

As regards the time resolution of the measurements, the
packet timestamping resolution provided by the Libpcap
library (which is used both by Tcpdump and Plab), and
by the kernel drivers that it links to, is of 1 ls. Moreover,
because of the wide range of the considered IPTs, as re-
ported in Section 3, we applied a logarithmic transforma-
tion to the measured values, 10log10ðIPT=1 lsÞ, which we
will refer to as dBl.
Data 1.0 0.75 1.0 0.63 0.16 1.1
Starting 1.0 50 1.0 50 1.0 50
Trained 1.0 1.8 1.0 0.29 0.17 0.98

AoM
Data 1.0 42 1.0 42 �0.10 0.086
Starting 1.0 50 1.0 50 1.0 50
Trained 1.0 47 1.0 47 �0.17 2.4

MSN
Data 1.0 1.0 1.0 0.49 �0.38 0.19
Starting 1.0 50 1.0 50 1.0 50
Trained 1.0 0.42 1.0 0.21 �0.59 0.17
5. Experimental results

This section presents some results of our model when it
is applied to SMTP, HTTP, AoM, and MSN traffic.

We used the model with N ¼ 4 states for AoM and MSN
traffic and N ¼ 5 states for SMTP and HTTP traffic, due to
their more complex structure. Choices N ¼ 4 and N ¼ 5
have been found effective empirically, as they provided a
sufficient number of modes to capture traffic behavior for
the considered applications. In our experiments models
with smaller number of states failed capturing the correct
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behavior, with some modes missing and/or correlation
mismatches. Also, we do not explore models with larger
number of states as increasing N provides a twofold nega-
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noticing that this section aims to provide: (i) the effective-
ness of HMM’s in traffic modeling at traffic level and (ii)
specific HMM’s for the 4 considered traffic typologies.

For all traffic typologies the learning algorithm con-
verged in terms of likelihood after a few iterations. Fig. 4
shows the log-likelihood normalized with respect to the
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average length of the sessions. The reason behind normal-
ization is because logðLðY; KÞÞ is decreasing with the
length of the sequence Y.

In the following, we denote ‘‘starting” model the uni-
formly distributed initialization for the parameters, while
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15 20

S and PS

g
0 5 10 15 20

–0.5

0

0.5

1
between IPT and PS

Lag

co
va

ria
nc

e

15 20

S and PS

g
0 5 10 15 20

–0.5

0

0.5

1
between IPT and PS

Lag

co
va

ria
nc

e

15 20

S and PS

g
0 5 10 15 20

0.5

0

0.5

1
between IPT and PS

Lag

co
va

ria
nc

e

15 20

S and PS

g
0 5 10 15 20

–0.5

0

0.5

1
between IPT and PS

Lag

co
va

ria
nc

e

data
starting
trained

data
starting
trained

data
starting
trained

data
starting
trained

data
starting
trained

data
starting
trained

data
starting
trained

data
starting
trained

riance for IPT and PS.



Table 5
Global statistics: traffic, model, global mean IPT (dBl), global mean PS
(bytes), IPT global st. dev. (dBl), PS global st. dev. (bytes)

lðtÞ lðpÞ rðtÞ rðpÞ

SMTP
Data 40 710 19 619
Starting 48 731 20 347
Trained 43 688 18 647

HTTP
Data 49 542 15 324
Starting 49 731 19 347
Trained 56 541 17 348

AoM
Data 47 12 8 4
Starting 42 69 11 30
Trained 47 12 8 4

MSN
Data 56 557 16 570
Starting 48 731 19 331
Trained 58 511 15 561

Table 7
HTTP conditional statistics: state, steady-state probability, conditional
mean IPT (dBl), conditional mean PS (bytes), IPT conditional st. dev. (dBl),
PS conditional st. dev. (bytes), conditional duration

si qi lðtÞi lðpÞi rðtÞi rðpÞi /i

s1 0.153 41 314 23 344 3
s2 0.356 54 345 14 70 27
s3 0.297 64 530 13 104 19
s4 0.111 59 880 15 195 11
s5 0.083 60 1387 15 77 3

Table 8
AoM conditional statistics: state, steady-state probability, conditional mean
IPT (dBl), conditional mean PS (bytes), IPT conditional st. dev. (dBl), PS
conditional st. dev. (bytes), conditional duration

si qi lðtÞi lðpÞi rðtÞi rðpÞi /i

s1 0.881 49 12 3 2 8
s2 0.100 27 15 5 7 1
s3 0.013 48 31 3 9 1
s4 0.006 52 25 1 8 1

Table 9
MSN conditional statistics: state, steady-state probability, conditional
mean IPT (dBl), conditional mean PS (bytes), IPT conditional st. dev.
(dBl), PS conditional st. dev. (bytes), conditional duration

si qi lðtÞi lðpÞi rðtÞi rðpÞi /i

s1 0.578 66 104 8 73 7
s2 0.092 44 437 17 299 1
s3 0.060 61 655 5 193 1
s4 0.270 45 1378 14 62 4
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tions of the Baum–Welch algorithm, the training set will
simply be referred to as ‘‘data”.

Table 3 compares the model discrepancy, for both the
starting and the trained models, with respect to data via
the parameter k2, commonly used in order to evaluate fit-
ting distributions [48]. Table 4 compares the amplitude
and decay parameters (K and m) for the covariances of data,
starting model, and trained models when an exponential
fitting (EF), with a minimum mean square error criterion,
has been applied; that is, covariances are described in the
form K expð�mlagÞ. More specifically, the amplitude
parameter is considered fixed (K ¼ 1) for the auto-covari-
ances, whereas it is a free parameter for the cross-covari-
ances. Both tables show that the model, even if working
in a jointly fashion, is able to fit with a good accuracy both
marginal distributions and covariances. Figs. 5 and 6, ana-
lyzed in the following, will confirm graphically the results
of both Tables 3 and 4. More specifically, Table 5 compares
the global means and standard deviations for the starting
and trained models with the data: the trained models exhi-
bit good results in terms of mean and standard deviation
for each considered traffic.

The starting values have been set via Eqs. (5) and (6) in
Section 3, and are useful to show how, in few iterations, the
model converges to values close to the empirical data. Such
global statistics are obtained as weighted averages of each
state conditional statistics, Eq. (3), whereas we will com-
ment the behaviors of the single states in the following
Table 6
SMTP conditional statistics: state, steady-state probability, conditional
mean IPT (dBl), conditional mean PS (bytes), IPT conditional st. dev. (dBl),
PS conditional st. dev. (bytes), conditional duration

si qi lðtÞi lðpÞi rðtÞi rðpÞi /i

s1 0.447 57 48 8 134 10
s2 0.109 18 542 14 269 1
s3 0.176 31 1344 10 140 4
s4 0.057 51 1107 7 204 1
s5 0.211 35 1458 13 7 2
subsection, where different comparisons among data,
starting and trained models, in terms of global pdfs (see
Fig. 5), auto- and cross-covariance (see Fig. 6) are made.

Some more considerations on the single modes discov-
ered by the model are made looking at the conditional sta-
tistics (see Tables 6–9). In addition we made the trained
models generate output variables to compare the synthet-
ically generated IPT–PS pairs with those from real data (see
Fig. 7). Finally the trained models are investigated in terms
of prediction capabilities (see Figs. 10, 8, 9, 11).

5.1. Model construction and validation

5.1.1. SMTP traffic
Fig. 5 shows how SMTP traffic presents two main modes

in the IPT distribution, separated by three orders of magni-
tude, and two main modes in the PS distribution, essen-
tially made of very small packets and full payload
packets respectively. More specifically, it is apparent from
Table 6 that s1 is responsible for transmission with large
IPT and small PS, while s3 and s5 are responsible for trans-
mission with small IPT and large PS. These three dominant
modes account approximately for 85% (from steady state
distributions) of the behavior of SMTP that mainly alter-
nates two phases: s1 with low bitrate and s3 and s5 with
high bitrate. States s2 and s4 can be viewed as transient
states to switch between these two modes.
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Fig. 7. Training (left) and Synthetic (right) traces for IPT and PS.
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Fig. 6 shows how the model captures temporal dynam-
ics, showing how both IPT and PS have a significant mem-
ory, due to the non negligible auto-covariances. More
interesting is the negative cross-covariance, confirming
that IPT and PS usually are not at the same time both large
or small.

In Fig. 7 we show the capability of the model to jointly
reproduce time series of both IPT and PS by synthetic gen-
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eration of traffic patterns, and thus it may be integrated
into a traffic generation or simulation framework.

5.1.2. HTTP traffic
In Fig. 5 the fitting of marginal distributions is shown.

Note that IPT are spread over eight orders of magnitude,
but the majority of them is concentrated approximately
between 10 ms and 1 s. These values are compatible with
RTTs found in Wide Area Networks. Indeed HTTP clients of-
ten perform a lot of subsequent requests to the same ser-
ver. In the case of Web, for example, the first request of
an HTML document is typically followed by more requests
for the embedded objects. If such objects are small enough
to be sent within one or few packets (as often is the case
[46]), the requests are sent with intervals close to the
RTT from the client to the server. As for the PS distribution,
the HMM model captures the characteristics of real data
but seems to slightly under-estimate small values in favor
of larger ones.

Differently from the previous traffic typology HTTP does
not present any dominant state while alternating various
behaviors. It appears less regular also because states with
all combination of small/large IPT and PS are present, as
confirmed by the small cross-covariance. The correlation
structures of HTTP, shown in Fig. 6, are very interesting.
They present correlation at several lags with an oscillating
behavior. The envelope decays faster for cross- than auto-
covariances, and it is accurately captured by the trained
model. It is worth saying that the model trained with sin-
gle sessions (here not reported) captured the oscillating
behavior too, while for the whole traffic, where different
kinds of sessions are considered, this is quite hard and
was not possible. Fig. 7 shows the results of synthetically
generated HTTP traffic patterns.

5.1.3. AoM traffic
N ¼ 4 states showed to be sufficient to capture the

behavior of the data. Fig. 5 shows how PS are usually smal-
ler than 20 bytes and concentrated around few close val-
ues, while on the contrary the IPT distribution presents a
bi-modal behavior, with the 2 modes separated by more
than 2–3 orders of magnitude. We found similar behaviors
in other real-time strategy games, where stations typically
send periodic update packets plus additional update pack-
ets when a user action must be immediately transmitted
[47]. This evident link between user actions and packet-le-
vel traffic is probably one of the causes of the more ran-
domness that was found in AoM traffic, when compared
to the other sources considered. Table 8 shows more spe-
cifically how both the IPT modes are associated to the same
range of PS, although the mode with lower IPTs (s2) is more
spread in terms of PS with respect to the mode with larger
IPTs (s1). In addiction, looking at steady-state probabilities
and conditional durations in Table 8 we can affirm that s1

and s2 capture the 2 typical situations of real-time strategy
games (periodic updates and user actions) while s3 and s4

are transient model introduced by the model. Fig. 5 con-
firms the previous analysis.
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Fig. 6 shows the results obtained for auto- and cross-
covariance. We found that all three covariances rapidly de-
cay, an aspect that is well captured by the trained model.
Also note (see cross-covariance at Lag 0) the presence of
a small dependence between IPT and PS of the single pack-
et, well captured by the trained model. This denotes the
dominance of the large IPT–small PS mode.

Fig. 7 shows how the model is able to accurately repro-
duce the AoM traffic pattern.

5.1.4. MSN traffic
MSN presents some similar characteristics to SMTP:

two main modes for both IPT and PS as shown in Fig. 5,
captured by states s1 and s4 as shown in Table 9. The for-
mer accounts for low bitrate behavior, large IPT
(�60 dBl) and small PS (�0.1 KB), while the latter for high
bitrate behavior, small IPT (�40 dBl) and large PS
(�1.3 KB). Again the negative cross-covariance in Fig. 6
confirms this kind of coupling between IPT and PS.
Whereas auto-covariance reveals the presence of memory
for IPT and PS characteristics. Fig. 6 shows an exponentially
decaying trend for the data that is well-captured by the
model, denoting the presence of a significant dependence
between IPT–PS pairs of successive packets.

In Fig. 7, it can be seen that the model is able to accu-
rately reproduce the MSN Messenger traffic patterns, rep-
licating the two main IPT and PS modes. Also in the case
of this traffic category, these results look promising as re-
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gards the model suitability for synthetic traffic generation
[7] and simulation.

5.2. Prediction: some preliminary result

After the presentation of the performance of the HMM-
based proposed model, here we show some preliminary re-
sult of its prediction capability. Indeed, the correlation
structure of the various traffic typologies suggests to use
the trained model for prediction purposes on a sample
trace. The main objective is to show the capability of the
model to provide the expected short-term future behavior
of the traffic with sufficient accuracy. Such a characteristic
results particularly appealing when thought as part of a
more complex network-sensing and adaptive-manage-
ment system. In order to give an idea of what kind of infor-
mation the proposed approach could provide to higher-
level applications, we performed (off-line) the following
basic steps on the traces previously described:

� Monitoring – W samples (in terms of IPT–PS pairs) are
observed iteratively to obtain an estimate of the current
state via the Viterbi algorithm [25];

� Prediction – on the basis of the current state estimate
and of the trained model parameters, the traffic is
assumed to remain in that state (thus keeping condi-
tional mean values for IPT and PS) for number of sam-
ples proportional to the conditional duration (Eq. (4)).
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Figs. 10, 8, 9, 11 show results in the case of AoM, SMTP,
HTTP and MSN traffic. We considered a W ¼ 3-sample
observation to obtain current-state estimate. Also, we as-
sume that the traffic holds on conditional mean values, re-
fer to Eq. (2), for a number of samples proportional to the
conditional duration, refer to Eq. (4), of the state. The val-
ues of the conditional statistics, used for shown results,
are those reported in Tables 6–9. Asterisks, circles, and dia-
monds represent data, monitored samples, and predicted
samples, respectively. Also, for better precision, a confi-
dence interval proportional to the conditional standard
deviation, refer to Eq. (2), is reported with a green segment.

Comparing the frequent superposition between aster-
isks and diamonds, it can be noticed how the model cap-
tures and predicts the traffic dynamics for all the
considered traffic typologies. Such a result is quite interest-
ing, especially when looking at the source behavior when
being in the states with large duration, i.e. s1 for SMTP
(whose conditional mean values are 57 dBl and 48 bytes),
s2 for HTTP (whose conditional mean values are 54 dBl
and 345 bytes), s1 for AoM (whose conditional mean values
are 49 dBl and 12 bytes), s1 for MSN (whose conditional
mean values are 66 dBl and 104 bytes).

Also, the very small ratio between diamonds and circles
gives an idea of the small amount of sensing that is needed
to infer quite reliable information of what we should ex-
pect in the short term future behavior of the traffic. Note
again that, due to the joint modeling we proposed, estima-
tion of the state variable allows to infer knowledge about
both IPT and PS expected behavior simultaneously.

Table 10 shows the relative mean square error (RMSE)
and the percentage of monitoring data (MP) with respect
the three different sizes of the monitoring window. It is
apparent how, for all the considered traffic typologies,
the RMSE is not significantly affected by the window size,
both for IPT and PS, while obviously the MP is increasing
with it. IPT prediction is very welle performing for all the
considered traffic typologies, especially for AoM and
MSN, while PS prediction is not very accurate for SMTP
and MSN traffic. Indeed, the trained models for such appli-
cations present some discrepancy with the training data in
PS pdf as well PS auto-covariance.

It is worth noticing that the experiment we have per-
formed is just a simple not-optimum example of using
Table 10
RMSE and MP for prediction with different sizes for the monitoring window

Traffic Window size IPT RMSE PS RMSE MP (%)

SMTP W = 3 0.12 0.44 37
W = 5 0.16 0.58 48
W = 7 0.15 0.52 56

HTTP W = 3 0.13 0.30 24
W = 5 0.12 0.27 33
W = 7 0.12 0.27 40

AoM W = 3 0.027 0.13 27
W = 5 0.027 0.13 38
W = 7 0.027 0.14 46

MSN W = 3 0.024 0.43 30
W = 5 0.020 0.42 41
W = 7 0.024 0.41 50
the model. Another possibility could be building from the
state estimated via the Viterbi algorithm an m-best list of
most likely n-transitions. The real value of the model when
used jointly with a monitoring algorithm, is the probabilis-
tic representation in terms of the state matrix A of the pos-
sible evolution of the traffic.
6. Discussion and conclusion

In this work, we proposed a HMM-based model of traf-
fic sources at packet level. It jointly models IPT and PS of
Internet applications traffic. It has been shown how the
proposed HMM approach is able to capture the behavior
of marginal distributions, mutual dependencies, and tem-
poral structures of the traffic generated by a heterogeneous
set of sources. The capability to accurately replicate and
predict traffic makes the proposed approach quite
promising.

Results obtained from four kinds of traffic sources, re-
lated to totally different Internet applications, have been
analyzed. Empirical data clearly show that this heteroge-
neity is also reflected by the traffic that they generate at
packet level. Indeed they differ for the behavior of the mar-
ginal distributions of IPT and PS but also for their correla-
tion structure. As for the last point, it is worth noting
that we found larger autocorrelations with a slower decay
for SMTP, HTTP, and MSN traffic when compared to AoM.
Such behavior can be partially explained by the influence
of TCP end-to-end flow control, which introduces depen-
dencies between IPTs. Indeed, while SMTP, HTTP, and
MSN run over TCP, AoM traffic is carried by UDP packets.
Furthermore, rigid application-level protocol rules of SMTP
and HTTP induce more structure into their traffic patterns.
On the other side, as regards AoM, the interaction of the
gaming user introduces more randomness into the traffic.
Again, we underline that the paper aims at modeling the
average behavior of a single session. The study of the
superposition of several sessions, generated by multiple
sources may indeed lead to the generation of an aggregate
traffic showing long range dependence and self similarity
characteristics, but such investigation falls beyond the
scope of the present work.

In all the cases the level of computational and structural
complexity associated to the model is quite low. Training
models for SMTP, HTTP, AoM and MSN required few itera-
tions, and though SMTP and HTTP traffic present a much
more complex structure, they only required one more state
(with respect to AoM and MSN) for effective modeling.
Then, the flexibility of an HMM approach, even when ap-
plied to a low-level traffic modeling, appears quite
encouraging.

Concluding, it is worth highlighting that the more excit-
ing result of the proposed model is, in our opinion, the
capability to fit at the same time both IPT and PS statistics
and dynamics, even if not obtaining extreme accuracy, of
four different traffic sources with a relative small set of
parameters. Benefits and possible applications of such
modeling approach include: (i) a better understanding of
source traffic dynamics (taking into account also temporal
structures) related to different Internet applications; (ii)
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exploitation of the short-term prediction capabilities of the
model; (iii) usage in traffic simulation and generation
frameworks [7]; (iv) application for traffic classification
purposes. Finally, we foresee the integration of the
presented model within a larger analytical framework,
based on HMMs, which includes modeling of heteroge-
neous packet channels [18,19].
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